Design and Implementation of a Scalable Intrusion Detection System
for the Protection of Network Infrastructure *

Y. F. Jou, F. Gong, C. Sargor, X. Wu

Advanced Networking Research
MCNC
RTP, NC 27709

Abstract

This paper presents the design, implementation,
and ezperimentation of the JiNao intrusion detection
system (IDS) which focuses on the protection of the
network routing infrastructure. We used Open Short-
est Path First (OSPF) routing protocol as an imple-
mentation example to illustrate our IDS design. How-
ever, the system architecture is generic enough that
the JiNao IDS can be used for protecting other pro-
tocols. The system features attack prevention and in-
trusion detection with tightly integrated network man-
agement components. The prevention module func-
tions like a firewall which consists of a small set of
rules. Both misuse (protocol analysis) and anomaly
(statistical based) approaches are implemented as de-
tection mechanisms in order to handle both known and
unknown attacks. Four OSPF attacks (i.e., MaxSeq,
MaxAge, Seq++, and LSID attacks) have been devel-
oped for evaluating JiNao’s detecting capability. Fur-
thermore, an SNMP based network management in-
terface has been designed and implemented such that
the JiNao IDS can be easily integrated with ezisting
network management systems.

1 Introduction

Given the recent growth of the Internet, intrusion
incidents are becoming common events of life. Some of
these incidents are simply out of innocuous curiosity.
Some, however, are due to malicious attempts in or-
der to compromise the availability of the information
system or the integrity and privacy of the informa-
tion itself. Despite the best efforts of the protocol de-
signers, implementors, and system administrators, it
is prudent to assume that attacks will occur and some,
unfortunately, will succeed. Therefore, it is vitally im-
portant to develop means to automatically detect and
respond to these attacks in real-time in order to main-

*This work is supported in part by DARPA/ITO through
Contract # F30602-96-C0325

0-7695-0490-6/99 $10.00 © 1999 IEEE

69

S. F. Wu, H.C. Chang, F. Wang
Computer Science Dept.
NC State University
Raleigh, NC 27695

tain critical information services. Since routing pro-
tocols (e.g., RIP, EIGRP, OSPF, BGP, and MPLS)
form the very heart of the Internet infrastructure, the
security issues regarding IP routing is of the utmost
importance.

Routing protocols can be classified as either
distance-vector or link-state. In distance-vector based
protocols, nodes keep tables of the best paths and as-
sociated metrics for all possible destinations and peri-
odically exchange the contents of the tables with their
neighbors. That is, a router will tell all its neighbors
about its connections to the whole world. On the other
hand, link state protocols are characterized by every
node keeping a “map” of the entire network which is
used to computer shortest paths to all destinations.
Each node contributes to this global view by period-
ically distributing (via flooding) link state advertise-
ments (LSAs). It has been identified in [1, 2] that link
state routing protocols, like OSPF [5], are more robust
against simple failures or attacks. In this paper, we
limit our focus to link-state routing protocols only.

Murphy and Badger from TIS [6] proposed a pre-
ventive approach by using public key signature scheme
to protect the integrity of LSAs (Link-State Advertise-
ment) in OSPF. With a public key infrastructure, the
source router uses its private key to sign the MAC
(Message Authentication Code) for every LSA cre-
ated. Since the intermediate routers do not know the
private key of the source router, they can not tam-
per with the LSAs without being detected. Each re-
ceiver of LSAs must use the source router’s public
key to verify its integrity. Therefore, their scheme
is secure against compromised intermediate routers.
Unfortunately, this proposal has been voted down by
the OSPF working group within IETF because (1) the
public key operations involved are too expensive, and
(2) the TIS version of OSPF protocol is more complex
than the original version.

JiNao, a joint research project between MCNC and

North Carolina State University, proposed a compre-
hensive approach which features both attack preven-
tion and intrusion detection to handle attacks for link-
state routing protocol. Since the detection process
does not require any modifications to the OSPF proto-
col engine, this is a very practical approach to handle
attacks as it does not need to go through the lengthy
IETF standardization process.

In this paper, we present the JiNao intrusion de-
tection system with the OSPF routing protocol as an
example for protection. Section 2 provides an overview
of the OSPF routing protocol. The JiNao system ar-
chitecture is presented in Section 3. Sections 4 and 5
describe in detail the protocol and statistical analysis
modules. Finally, in Section 6, we discuss our expe-
rience in using the JiNao system in detecting routing
protocol attacks.

2 Link State Routing and OSPF

2.1 Dynamic Route Update
Link state routing protocols such as OSPF create a
global network topology map in three distinct phases:

Adjacency Establishment: An OSPF router
sends Hello (or Keep-Alive) packets periodically to
discover its neighboring routers. Three attributes are
included in each Hello packet: hello interval indi-
cates the frequency for sending out such Hello packets,
router dead interval specifies the time it takes to de-
clare a router unavailable, and neighbor list describe
the list of neighbors that the sender has already met.
Once neighboring routers have “met” via the Hello
Protocol, they go through a Database Exchange Pro-
cess to synchronize their databases with one another.

Information Sharing by LSA Flooding: The
link-state information about a router’s local neigh-
borhood is assembled into a Link-State Advertisement
(LSA), and flooded throughout the whole network to
reach all other routers.

Shortest Route Path Calculation: Once a router
collects all the link-state information, it uses the Di-
jkstra algorithm to calculate a shortest path tree with
the router itself as the root node and then forms a
complete picture of routing in the network.

2.2 Hierarchical Routing

In order to reduce routing traffic and the size of
the topology database, OSPF adopted a two-level hi-
erarchical routing scheme, area and backbone, within
an Autonomous System (AS) in which a collection of
computing systems, routers and other network devices
share a single administrative entity.

70

In OSPF, an area is a collection of networks, hosts,
and routers connecting each other. Each area runs
a separate copy of the basic link-state routing algo-
rithm. This means that each area has its own link-
state database. The topology details of an area are
hidden from the outside of the area. Conversely,
routers internal to a given area know nothing about
the detailed topology external to the area. This isola-
tion helps not only to reduce routing traffic but also to
constraint the bad effect of malicious routing protocol
attacks being launched from a different area. Further-
more, each autonomous system has one special area
called Backbone, which serves as the hub of this AS
and all areas in the same AS must connect to this
backbone.

2.3 OSPF Packet Types

OSPF defines five types of control packets. Hello
packets are used by two adjacent routers to maintain a
neighborhood relationship. Database Description and
Link State Request packets are used to synchronize
two router’s database when an adjacency is being ini-
tialized. Link State Update and Link State Acknowl-
edge packets are used to broadcast LSAs (Link State
Advertisement), and will be explained in detail in the
next section.

2.4 Link-State Advertisement (LSA)

A link state update OSPF packet carries one or
more LSA (Link-State Advertisement) instances de-
scribing the current status of one or more network
links. The header of an LSA instance is shown in
Figure 1. LSA Age (the first 16 bits in the header)
is set to zero by the originator, and is incremented
on every hop during the flooding procedure. The age
of an LSA is also incremented as it is held in each
router’s topology database until it reaches its maxi-
mum value, 3,600 (one hour). A maxage LSA instance
is considered out of date, and should be purged out
of a router’s database. If an originator decides to
purge an out-of-date LSA instance out of its database,
it should re-flood this maxage LSA as a signal for
other routers to also remove the same LSA instance
from their database. This guarantees the consistency
among the distributed network topology database.

Here, a distinction must be made between an LSA
and an LSA instance. An LSA is associated with a
particular link or network. For example, let’s suppose
that there is a link connecting router A and B. Router
A is responsible for originating an LSA to tell other
routers that it has a link to router B, while router
B will use another LSA to tell others that it has a
link to router A. An LSA instance gives the state of

0 16 31
LS age Option LS type
Link State ID
Advertising Router ID

LS sequence number
LS checksum

length

Figure 1: LSA header format

a particular LSA at a particular time. For example,
router A at time ¢; may broadcast an LSA instance
saying the cost for its link to router B is 10. After a
while, say, at time t5, the status of the link changes.
Router A will broadcast a new LSA instance telling
the new cost for this link. In a network, there may
exist more than one instance for a particular LSA.

The LS sequence number field in the LSA header, a
signed 32-bit integer, is used as an indicator to com-
pare the freshness of two different LSA instances for
the same LSA. The smallest LS sequence number is
0x80000001, and the largest number is Ox7fffff£f,
while 0x80000000 is reserved by OSPF. For instance,
an LSA instance with seq# 0x91000123 is considered
to be newer than another instance 0x87234006. The
originator of an LSA will increment the sequence num-
ber by 1 for each new LSA instance and other routers
will accept the newer/updated link state information
being carried by the new LSA instance. When an at-
tempt is made to increment the maximum sequence
number, i.e., Ox7f£££fff, the MaxSeq LSA instance
must be flushed from the routing domain first. The
is achieved by prematurely aging the MaxSeq LSA to
MaxAge (3,600) and re-flooding it through the network.
After the purging, a new instance can then be origi-
nated with sequence number 0x80000001.

2.5 OSPF Security

Two inherent mechanisms of OSPF make it very
robust and resilient to failures, even to some malicious
attacks.

Flooding and information least dependency:
As we mentioned before, LSAs are propagated by
flooding; the flooding algorithm is reliable, which en-
sures all routers in the same area have the same
topological database. Consider either a single point
(router) failure case or an intruder trying to fake or
modify other router’s information: As long as there is
another alternate path, all good routers will finally re-
ceive both original LSA and the corrupted LSA. This

71

triggers an interesting phenomenon in OSPF fight-
back: a good router trying to convince a bad router by
continuing to send it correct information, as observed
in our previous work [9]. We think it is an advan-
tage in that it could be easily spotted by an Intrusion
Detection System (IDS).

A more profound impact of flooding individual LSA
is information least dependency: every router uses the
raw information from the original advertiser instead
of aggregated information from neighbors, which gives
security advantages over other pure distance vector
based routing protocols.

In a distance vector algorithm (e.g., RIP), each
router sends only summarized information, which are
computational results based on reachability informa-
tion from its neighbors. This aggregation of informa-
tion has two implications. First, it is very hard for a
router to validate the information it receives. Second,
even if a router detects incorrect information, it is still
difficult to determine the source of the corruption.

By comparison, in a link state routing algorithm
such as OSPF, each router generates information
about its local topology (e.g., its neighbors), and also
forwards such information to other routers via flood-
ing. This has several advantages: every router inde-
pendently possesses the entire topology information
for the network and each router is responsible only for
its own local portion of the topology. As long as at
least one of its neighbor is honest, it can get raw in-
dependent information of the whole world. Obviously,
information independence helps (compared to distance
vector) to find out which router is corrupted. Also, in-
dependence makes it possible to use authentication to
verify the origin of a message. Recently, the method
proposed in [7, 8] which uses predecessor-based infor-
mation to harden distance vector algorithms, justifies
the principle from another viewpoint: a predecessor is
essentially a piece of information provided by source
to alleviate the total blindness of router. By going
through the predecessor, a router can help reconstruct
the shortest path tree back to the source. It is the
predecessor information that makes a secure distance-
vector based algorithm possible.

Hierarchy routing and information hiding:
The primary goal of hierarchical routing is to deal with
routing scalability issues (reduce routing table size,
link bandwidth and router computing resources). But,
we also see it has both robustness and security advan-
tages. OSPF is a two-level routing protocol: intra-
area and inter-area routing, with ABR (area border
router) connected to backbone and exchanging area
summary information. There are three cases we can

consider here:

e Internal router is compromised: The implication
of two-level routing is that an internal router does
not need to know the topology of the outside ex-
cept its own area. Consider the case where an
internal router is compromised. The damage it
can do is very much limited to its area, without
impacting the routing in other areas.

e ABR (area border router) is compromised: If
there is only one ABR or this ABR is the only one
attached to the backbone, then the area will suf-
fer serious consequences. If there is other ABRs
online, since all ABRs for an area should broad-
cast the same topology information, redundancy
would provide connectivity and mutual verifica-
tion to possibly detect any conflict of information.

e ASBR (autonomous system boundary router) is
compromised: OSPF uses ASBR to import exter-
nal routing information into OSPF routing do-
main. These external routing information will be
flooded through the routing domain. What the
ASBR does is actually punch a hole in the area
boundary. It is probably the single worst security
vulnerability in OSPF and there is no easy way to
fix this. Database overflow protection can prevent
an intruder from arbitrarily flooding junk routes
to a certain degree, but is incapable of detecting
false or fake routes.

OSPF Attack s
Implementation Meq++
-1 MaxSeq
GateD - M axAge
Daemon

orig
OSPF
PDUs

divert 5001 OSPF
from any to any OUT

FreeBSD /' divert 5000 OSPF ipfw
Kernel i from any to any IN

attack orig

OSPF OSPF

PDUs | 1PDUs

Network

Figure 2: OSPF Attack Implementation

72

2.6 OSPF Attacks

In order to validate the JiNao IDS system, four
OSPF attacks [9] have been implemented for both
the FreeBSD and Linux platforms through a mech-
anism called divert socket. Divert sockets enable
both IP packet interception and injection on the end-
hosts as well as on the routers. Interception and injec-
tion happen at the IP layer. The intercepted packets
are diverted to sockets in the user space, thus they will
not be able to reach their destination unless they are
reinjected by the user space sockets. This allows dif-
ferent tricks (e.g., routing and firewall) to be played,
outside the operating system kernel, in between the
packet interception and reinjection. The divert socket
on Linux was implemented by MCNC [10]. The at-
tacks themselves are implemented in the user process,
and the tampered OSPF packets are then re-injected
into the kernel, which will deliver these packets to ei-
ther the routing daemon running on the same machine
(incoming direction) or its neighbors (outgoing direc-
tion). The architecture of attack implementation is -
depicted in Figure 2. In the following, we briefly de-
scribe the four attacks.

2.6.1 Attack 1: Seq++ Attack

When an attacker receives an LSA instance, it modi-
fies the link state metric and increments the LSA se-
quence number by 1 (i.e., Seq++). The attacker also
needs to re-compute both the LSA and OSPF check-
sums before the tampered LSA instance is re-injected
into the system. Because this attacking LSA has a
larger sequence number, it will be considered “fresher”
by other routers. Eventually it will be propagated to
the originator of this particular LSA. The originator,
according to the OSPF specification, will “fight back”
with a new LSA carrying correct link status informa-
tion and an even fresher sequence number.

The effect of this attack is an unstable network
topology if the attacker keeps generating “Seq++” LSA
instances. For example, all routers at one point will
think the link cost is big (e.g., 100}, but then the fight-
back LSA instance from the originator will tell them
the cost metric is much smaller (e.g., 10).

2.6.2 Attack 2: MaxAge Attack

When an attacker receives an LSA instance, it can
modify the LSA age to MaxAge (i.e., 1 hour), and re-
inject it into the system. This attacking LSA instance,
with the same sequence number but age set to MaxAge,
will cause all routers to purge the corresponding in-
stance from their topology database. Eventually, the
originator of this purged LSA will also receive this
MaxAge LSA instance. The originator, according to
the OSPF specification, will “fight-back” with a new

LSA instance carrying correct link status information
and a fresher sequence number.

The effect of this attack is also an unstable network
topology if the attacker keeps generating “MaxAge”
LSA instances. For example, all routers at one point
will think the link is not available, but then the fight-
back LSA instance from the originator will tell them
otherwise.

2.6.3 Attack 3: MaxSeq# Attack

When an attacker receives an LSA instance, it can
modify the link state metric and set the LSA sequence
number to Ox7FFFFFFF (i.e., MaxSequenceNumber).
The attacker also needs to re-compute both the LSA
and OSPF checksums before the tampered LSA in-
stance is re-injected into the system. This attacking
LSA instance, because it has the maximum LSA se-
quence number, will be considered the “freshest” by
other routers. And, eventually it will be propagated to
the originator of this particular LSA. The originator,
according to the OSPF specification, “should” first
purge the LSA instance (setting age equal to MaxAge)
and then flood a new LSA carrying correct link sta-
tus information and the smallest sequence number:
0x80000001.

We discovered in [9] that the effect of this attack
depends on the implementation of the OSPF protocol.
If the protocol is indeed implemented correctly, then
it is similar to Seq++. On the other hand, many rout-
ing implementations do not handle the MaxSeq LSA
correctly: the purging of the MaxSeq LSA is not im-
plemented. We tested two different implementations,
and neither of them implemented this purging mech-
anism. This implies that the MaxSeq LSA will stay in
every router’s topology database for one hour before it
reaches its MaxAge. In other words, an attacker can
control the network topology database for upto one
hour.

2.6.4 Attack 4: LSID Attack

According to the OSPF specification, the Link State
ID and the Advertising router ID of a router LSA
(type 1) should be the same. Some implementations
did not check this requirement and take it for granted.
When an attacker intercepts an outgoing type one
LSA, it modifies its link state ID such that it’s differ-
ent from the router ID. The victim (originator of this
LSA) will use this LSID as a hash key to locate the
database index pointer. If not found, a new pointer
will be created. Later this pointer (NULL) is used to
access the Is_age, which then causes a segmentation
fault.

The effect of this attack is that the gated on the
victim will stop running. Besides this serious damag-

73

ing effect, one interesting aspect of this attack is about
the process of recovering this victim router. One has
to stop the gated process on all of the routers in the
same area before the victim can re-start its gated. It’s
because the corrupted LSA is still sitting in the neigh-
bors’ database. One has to first stop all the gated pro-
cesses to effectively purge this bad LSA. Otherwise,
when the victim restarts its gated, it will have a seg-
mentation fault again by this bad LSA (received from
one of its neighbors while it exchanges the database
during start-up).

2.7 Testbed Configuration

In order to demonstrate attack effects and the de-
tection capabilities of the JiNao IDS, a routing testbed
has been setup with the configuration shown in Fig. 3.
There are four subnets and six routers on the testbed.
The routers are PCs running gated on either Linux or
FreeBSD operating system. Traceroute is running on
router 1 to reach router 6. The link costs are 5 for the
links from router 2 to 172.16.123.X subnet and from
router 4 to 172.16.127.X subnet. The rest of the links
have a cost of 10. Based on this cost configuration,
the traceroute reports the path of going from router 1
to 6 is 1-;2-;4-;6.

The attacks are launched from router 3 to router
2 with the intention of modifying the link cost from
5 to 100 on router 2. If the attacks are successful,
we should expect to see traceroute change its path to
routers 3, 4, and 6. It was exactly what we observed
after the attacks were launched.

Figure 3: Routing testbed configuration

3 JiNao: Intrusion Detection System
Architecture
In this section, we present an overview of JiNao’s
system architecture design. The system consists of
complementary functional blocks for providing com-
prehensive detection capabilities. It also incorporates
standard network management functionalities to lay
a foundation for facilitating automated responses in
future research efforts.

Figure 4 illustrates the architecture design of our
intrusion detection system. At the top level, there
are two subsystems: namely, local detection subsys-
tem and remote management subsystem. The remote
management unit implements a set of network man-
agement applications which can both probe the status
of and issue commands to the local detection subsys-
tem. It was one of our design objectives that the Ji-
Nao system is capable of being integrated as part of
an SNMP-based network management system.

Decision

IDS detection
information

Information
Security Information mb m
Officer Module Module. 4 Prevention —
& Module
mw rules
TR Rt gl /Sy U | —
= Protocol Engine =

| Routing Signaling
L Flow Control

Figure 4: JiNao System Afchitecture.

3.1 Local Subsystem

A local subsystem consists of the following mod-
ules: rule-based prevention module, protocol and
statistical-based detection modules, decision module,
and local JiNao MIB agent.

3.1.1 Prevention Module

As the name ’“prevention” implies, this mod-
ule will implement a small set of administra-
tive/policy /firewall rules to filter out any packet with
clear security violation before it enters into the router.
The intent of the design is for this module to serve as
a gate-keeper with a very short response time. The
packets to be discarded include all those that may have
significant damaging effect on the infrastructure ac-
cording to general security guidelines or special secu-
rity concerns of an administrative domain. The LSID

74

attack described in Section 2.6.4 is one clear example
to justify the notion of attack prevention.

3.1.2 Detection Module

If a packet passes through the prevention module, it
will be forwarded to the protocol engine for execution
and to the local detection module which performs both
statistical and protocol-based intrusion analysis. The
results of these analyses are available for management
application to access through SNMP. As shown in the
Figure 4, the set of rules and their associated param-
eters in both prevention and detection modules can
be dynamically modified by the remote management
applications in response to the input of detection in-
formation. Therefore, our design allows certain degree
of automated responses through the adoption of net-
work management framework.

Statistical Analysis Module Intrusion detection
using statistical analysis is founded on the contention
that behavioral signatures exist for either users’ usage
profiles or protocol execution patterns (in this case,
OSPF routing protocol) and intrusion will result in
abnormal profiles. Any behavior deviating from the
normal profile will be considered as an anomaly and
appropriate alarms can be triggered. This statistical-
based module provides the capability to detect intru-
sions that exploit previously unknown vulnerabilities.
It is intended to uncover those attacks that cannot be
prevented by a set of rules embedded in a rule-based
component or cannot be detected by security analysis
conducted through protocol-based approach.
Protocol Analysis Module The protocol-based
approach detects intrusion by monitoring the execu-
tion of protocols in a router and triggering an intrusion
alarms when an anomalous state is entered. Specifi-
cally, we have investigated the OSPF routing protocol
operation through finite state machine (FSM) analy-
sis.

3.1.3 Decision Module
The decision module serves as a coordinator to corre-

late the detection information from both the statistical
and protocol analysis modules and takes appropriate
action accordingly. One example to illustrate the func-
tion of the Decision Module is in the handling MaxSeq
attack described in Section 2.6.3. According to the
OSPF specification, Ox7fIfHIf is a legitimate sequence
even though it takes at least 300 years for it to hap-
pen under a normal operation. One can choose to drop
any LSA with MaxSeq right at the prevention module.
However, a better way is to implement the modeling
of MaxSeq attack in the protocol analysis module and
turn on the wrapper function in the prevention module
to handle the MaxSeq attack properly. (The wrapper

function processes the MaxSeq according to the OSPF
specification.) The decision module can perform such
coordination between the protocol analysis and pre-
vention modules in the local sub-system.

3.1.4 Intrusion Detection MIB: JiNao MIB

As part of the network management framework, the
SNMP MIB support in JiNao base (JiNao MIB) main-
tains and updates variables of interest. In the context
of JiNao, the MIB is the database which stores the de-
tection results from detection modules. The decision
information issued from remote management applica-
tions can also be maintained through the MIB inter-
face. The JiNao MIB specification has been defined
and implemented.

3.2 Remote Subsystem

A remote subsystem consists of a set of manage-
ment applications for monitoring and controlling a few
local detection subsystems. A remote management
application, for example, may sometimes re-configure
the local detection system dynamically. With this con-
figurability, the local detection subsystem can respond
to intrusion differently under different situations.

4 JiNao Protocol Analysis Module

JiNao’s Protocol Analysis Module (JPAM) utilizes
the “knowledge” about the target protocol engine
(e.g., OSPF), and examines the incoming and out-
going protocol engine traffic (e.g., OSPF traffic) to
detect whether a known attack instance has been
launched.

4.1 Architecture

JPAM consists of the following two modules as
shown in Figure 5:

Event Abstraction Module: This module takes
IP packets (e.g., OSPF protocol packets) as input and
extracts/analyzes target protocol (e.g., OSPF) spe-
cific information. For instance, if the Decision mod-
ule in JiNao is interested in LSA-level information for
the LSA instances originated by a particular router
X, then an Event Abstraction module instance will
be created and configured to filter out those LSA in-
stances that are related to this scope. The output
of this module is a sequence of high-level events that
will be consumed by one or more JFSM (JiNao Fi-
nite State Machine) pattern matching modules. In
other words, each JFSM only handles LSA instances
(originated from one particular router) representing
the status information of the same link.

When an OSPF packet is intercepted from the
router’s kernel, JPAM will record the timestamp ac-
cording to its local clock, and dispatch each LSA in-
stance to appropriate Event Abstraction modules. If
none of the JFSMs is interested in this LSA instance,
it will be dropped immediately. Furthermore, it will
decide whether it is an incoming (from other neighbor
routers) or outgoing (from the router itself) LSA in-
stance. The target Event Abstraction module will first
analyze three fields in the LSA header: CheckSum,
Age, and Seg# to determine if any of the following
four high-level events should be generated: “Invalid”,
“MaxAge”, “MaxSeq”, “MaxAgeSeq”, or “Seqlncr”.
If none of the four events happens, this new LSA in-
stance will be marked as a normal LSA update and
input the event “UpdateL.SA” to some JFSM pattern
matching modules. According to the OSPF specifi-
cation [5], in JiNao, we defined a set of LSA related
events as partially shown in Table 1.

iInvalid indicates that LS checksum of the newly re-

oInvalid ceived LSA instance (incoming or outgoing,
respectively) is invalid.

i-MaxAgeSeq| indicates that the newly received LSA in-

o_MaxAgeSeq stance (incoming or outgoing, respectively) is
with both MaxAge and MaxSequenceNumber,
which is a purging LSA for the fightback
purpose.

i-MaxSeq indicates that the newly received LSA is with

0-MaxSeq MaxSequenceNumber but without MaxAge.

iInitSeq Incoming or Outgoing LSA with the minimal

o_InitSeq sequence number 0x80000001.

i-Seqlncr indicates that the router has just received

o InitSeq or sent an LSA instance with a larger se-
quence number than the last LSA instance
(but the same LSA) that was sent or received,
respectively.

i-Update indicates that the router has received or sent

o_Update a regular Link-State Update packet with nor-

mal LSAs within the regular period.

75

Table 1: The Abstract Events for LSA: A Partial List

JFSM Pattern Matching Module: For each of
such potential attacks, a pattern matching module
instance will be created to process high-level events
specially created for detecting that particular attack
instance.

If a known attack is launched, at least one of the
JFSM module instances should raise a real-time alarm
event and report it to the decision module. On the
other hand, if a JFSM instance can not handle the
input event from current state, it will issue a message
indicating the execution status of this instance. If all

the JFSM instances fail this way, it is likely that an
unknown attack has occurred.

|
Protocol Analysis Module

(PAM)
o0 O
Event Abstractor Event Abstractor
(EvtAbs-0) (EvtAbs-N)
[X N J

(rsm1) (FsM2) . (FsMM) (FsM1) (Fsm2)

Figure 5: Architecture of JiNao Protocol Analysis
Model

4.2 JiNao Real-Time FSM Specification

The JiNao Real-Time FSM (JFSM) model is a vari-
ant of the I/O Automota model defined in [4]. For
modeling temporal relations among events, timing in-
formation is introduced in JFSM’s state transition di-
agram. Therefore, in JFSM, a state transition will
depend on not only the event identity itself but also
the occurrence time of that event.

Definition 1 (JFSM M/FSM) A JFSM, MJFSM,
consists of 9 tuples: MJFSM = (Q, %, 6, qo, F, FS-
Mid, LSAid, Reportinfo, EffExtQue), where Q is a fi-
nite set of real-time states, ¥ is the alphabet of events
or input symbols, § C Q x ¥ x Q 1is the transition
function mapping Q x ¥ to Q. That is, ¥(q,a) is
a real-time state for each real-time state q and input
symbol a. qo C Q is the set of initial real-time states
and F C Q 1is the set of final real-time states. Further-
more, M; also contains four more components related
to intrusion detection: string FSMid to identify M;,
string LS Aid to identify the LSA instances that M;
is handling, string ReportInfo to represent the mes-
sage which will be sent out when intrusion detected
(i.e., reaches a critical tranmsition), and a queue
EffEztQue for recording the effective execution.

Definition 2 (Input Events for M/ 5M) The in-
put event e; is a 3-tuple:

e; = (ename, etime, edirection),

where etime is the timestamp for the occurrence of
e;, ename ts the event identity as defined in Table 1.
edirection is used to identify whether this is an “out-
going” or “incoming” LSA event.

FSM-K

76

Definition 3 (Real-Time State of M/F5M)
Each real-time state RtS, in MJF5M is q 5-tuple:

RtSs = (SID7 Tinv Tlaata Tcurrcnla RtT))

where sID is RtS,;’s identity, T;, is the time when
JFSM was entering RtS; from another state RtS,
(RtSs # RtS;), Tiast keeps the last time when a tran-
sition happened in the current state RtS; (i.e., a tran-
sition loops back to the same state), Toyrrent 5 the
current time, and RtT is the set of available real-time
transitions for this state RtS;.

According to the above definition, when MJFSM ig
entering to a state RtS, from another state RtS,
(RtSs # RtSp) because of the input event e;, RtS;. Ty,
and RtS;.T,yrrent Will be updated to the timestamp
of e;, e;.etime. RtS;.Tiae¢ will be always updated to
e(i—1)-etime. If a new transition from a RtS, to RtS,
itself, then RtS,.T;, will remain the same. That is, as
long as MJFSM gtays in the current state(e.g., loop-
ing around the current state), RtS,.T;, will not be
changed, only RtS;.T.yrrent and RtS,;.Ti.s: will be
updated. The elapsed time during which M/FSM
has stayed in the current state can be computed by
(RtSs.Teurrent — RtS5.Tn). Furthermore, the inter-
LSA arrival time is (RtSs.Teyrrent — RtSs.Tiast)-

On the other hand, if a new transition is from a
RtS, to a different state RtS, (i.e., RtS; # RtS,)
because of e;, RtS,.Ti, will be updated to e;.etime,
while RtS;.T;, will still remain the same. There-
fore, (RtSy . T;n, — RtS;.T;y,) represents how much time
MJFSM spent in RtS,.

Whenever an input event occurs, M7¥SM takes
that input and checks if there is a transition available
for handling this input and determines if it can ad-
vance to next state or not. One single event may have
more than one transitions and M;F5M will process
the first one which satisfies the given time constraints.

Definition 4 (Real-Time Transition of M/¥SM)
RtT: Each real-time transition RtT; in M;FSM

is a 8'tu'ple: RtTl = (Rt.Sfrom; €in, 7, Rtstoy
Taiste, Toste, Tnteroo, T) where RiSfror

is the “from” state, e;, can be either a real in-
put event triggering RtT; or a special NULL event
e?, v is the output result, RtS;, is the “to” state,
Tsiate and Tpiete represent lower and upper bounds
(integers in seconds), respectively, for the value of
(RtS:0.Tin — RtSfrom-Tin)- In other words, for allow-
ing RtT; to occur, the time that MJFSM has spent in
RtStrom must be higher than T8¢ and lower than

A min |
Tiiate. Similarly, Tinterv! and Tirtervel represent

lower and upper bounds (integers in seconds), respec-
tively, for the value of (RtSio.Tin — RtSfrom-Tiast)-
For allowing RtT; to occur, the interval between
two LSA events must be higher than Tintervel gnd
lower than Tinte™vel. Finally, RtT; is effective if
RtT;.RtSfrom # RtT;.RtSy,.

M7FSM may have two different transitions from
the same state on the same input event. For example,
we have:

RtTl = (RtSa,lice, eHeilo»71 ’ RtSalicu 0, 107 0: 00),
and,
RtT2 = (Rtsalice: €Hello, ’721 RtSbob, 117 o0, O, OO)

If the egeno event occurs less than 11 seconds after
M7FSM entered RtSaice, then RtT) will happen and
JFSM will remain in RtSgjce. Otherwise, RtT,, a
critical transition, will be triggered and M/¥SM will
enter RtSy,5. Please note that a special case such as
the following critical transition:

RtT; = (RtSatice, e¢’, ’)'3, RtSpob, 31, 00,0, 00)

represents that, even if NO real events occur, M/ FSM
will only stay in RtS,;c. for at most 30 seconds.
Given an input string, an execution of MJFSM
can be represent as a sequence of transitions,
(RtTh, RtT», ...). The effective execution of
MJF5M consists of only those transitions that are
effective. Ile., Vi, RtT;. RtSfrom # RtT;.RtSi. In
other words, an effective execution of M/¥SM only
contains those transitions changing M/ FSM’s state.

Definition 5 (Critical Transition of M/FSM)
RtTgritical: A critical transition RtT§itical s the

last transition when M7 FSM detects an intrusion pat-
tern. A critical transition will trigger Mg’F SM 4o
report a detection message to the decision module,
which contains FSMid, LSAid, ReportInfo, and
EffExtQue.

4.3 Detecting Known OSPF attacks: Ex-
ample and Results

In our implementation of JiNao Protocol Analysis
Module (JPAM), a JFSM instance is specified in a
configuration file. To detect the attacks mentioned in
section 2.6, we have developed a set of JFSM instance
files. As an example, a JFSM to detect the Seq++
attack is depicted in Figures 6 and 7. In this example,
JiNao is running on the originator of the monitored

LSAs.

77

Lines 1-2 in Figure 7 describes two possible tran-
sitions from the initial state. Line 1 describes that,
if the new incoming LSA’s sequence number is big-
ger than the previous outgoing LSA (with the same
LS Aid), an i_SeqIncr event will trigger the transi-
tion and the JFSM will then be in State 1. In the at-
tack scenario, this transition represents that the LSA’s
originator has received its own LSA instance with an
abnormal sequence number — normally the sequence
number should be the same as the one it just sent out.

However, this unusual event by itself is not enough
to raise a red flag for the Seq++ attack. In OSPF, if
a router crashed, its LSA instances will still be kept
by other routers for about 30 minutes (or 1800 sec-
onds). Therefore, when this router restarts within the
30 minutes limit, it can still receive “old” LSA in-
stances with a bigger sequence number. Under such
a case, the LSA’s originator will issue another LSA
with an even bigger LSA to “clean-up” the old copies
out there. Line 3 represents this “clean-up” or “fight-
back” scenario, and it is an o.SeqIncr as the origi-
nator will increment the LSA by at least one. Please
note that at this state, the originator could receive
more than one i_SeqIncr before the o_SeqlIncr is
out. The rationale is that, if the originator has more
than one neighbors, it could receive more than one
copy of i_SeqIncr. However, after the o_SeqIncr is
out, it is impossible for an old copy of the LSA instance
to raise an i_SeqIncr as the most recent outgoing se-
quence number has been updated. Finally, if the orig-
inator itself has crashed, then it will not perform the
“fight-back” within the 30 minutes limit. Therefore,
it will trigger the Line 4 transition and go back to the
initial state.

Lines 6-8 in Figure 7 describes whether this origina-
tor receives another unusual i_SeqIncr from one of its
neighbors after it delivered an o_SeqIncr. If this is in-
deed a Seq++ attack, the attacker will keep increasing
the sequence number and therefore, in Line 6, within
thirty minutes, we will receive another i_SeqIncr.
The transition in Line 9 is critical, as after another
fight-back from the originator is observed, the JFSM
will raise a red alarm about Seq++ attack to the deci-
sion module.

Due to the space limit, we can not explain the de-
tails for all three attacks. In summary, we have de-
veloped three different JFSMs in handling those three
attacks: Seq++, MaxAge, and MaxSeq. And, we have
tested our JFSMs on three different routing testbed:
MCNC, NCSU, and Air Force Rome Laboratory. Our
experimental results demonstrated that all three at-
tacks can be detected without any false positive.

(TimeOut Automa;

*., if T2 > 30mins

*., if T2 > 30mins

o_Update, if T2 < 30mins

Figure 6: a JFSM diagram for LSA Seq++ Attack

FSMid: Seq++JFSM ReportInfo: For_Seq++
logToFileName: ./Seq++AttTest.log maxLogQueSize: 2000
Real-Time Transitiomns:

from event output to MinS MaxS MinI MaxI critical

e mm o o o o o e e o e R 8 0 e e ——— - S B M Gm e ammmam e e mm -
01 0 i_SeqIncr i_SeqIncr 1 0 inf 0 inf NO

02 0 = StayAtO 0 0 inf 0 inf NO

03 1 o_Seqlncr o_FightBack 2 0 1800 0 inf NO

04 1 o_Update NtFtBackOnTime O 1800 inf 0 inf NO

06 1 =% StayAtl 1 0 inf 0 inf NO

06 2 i_Seqlncr i_SeqlncrAgain 3 0 1800 0 inf NO

07 2 o_Update GoBkInit 0 0 inf 0 inf NO

08 2 =* StayAt2 2 0 inf 0 inf NO

09 3 o_SeqIncr o_FightBackAtt O 0 1800 0 inf YES

10 3 =* GoBkInit 3 1800 inf 0 inf NO

11 3 = StayAt3 3 0 1800 0 inf NO

- ——— . mo- m,mee Smee mmee m-e— mmee————

Figure 7: a JFSM Configure File for LSA Seq++ Attack

78

o_BigJumpSeqlncr, if T2 < 30mins

5 JiNao Statistical Analysis Module
(J SAM)

In the heart of JiNao’s statistical analysis module
is the NIDES/STAT algorithm [3] from SRI. The al-
gorithm was adapted and implemented in detecting
OSPF routing protocol attacks. This section first pro-
vides a brief discussion of the measure classification,
both in the context of NIDES and JiNao. We then
give a brief description of the NIDES algorithm, dis-
cuss its effectiveness when applying to OSPF routing
protocol, and explain some fine-tunings we made to
suit our needs.

5.1 Measure Classification

NIDES/STAT describes subject behavior by means
of a profile, which is separated into short-term and
long-term components. Aspects of a profile are repre-
sented as measures in the form of probability distri-
bution. NIDES defined four classes of measures:

Activity Intensity Measures, which
measure whether the volume of activity generated
is normal; for instance, the OSPF packet volume
generated by a certain application.

Categorical Measures, whose values are by nature
categorical, like OSPF packet types, or files which
were accessed.

Continuous or Counting Measures, whose
values are numeric, like LSA age or CPU usage.

Audit Record Distribution, which monitors the
distribution of all types of activity that have been
generated in the recent past.

In terms of the probability distribution computa-
tion, each class of measures is done by the way of
binning procedure for establishing histogram. Bin-
ning procedure refers to the computation in assigning
a measure value to a correct bin in a histogram. Some
measures have fixed bin end-points, like OSPF packet
types (five types) and LSA age distribution (from 0
to 3600 seconds). Some measures, on the other hand,
the bin end-points have to be determined first through
other means. For instance, the upper bound of the
OSPF packet volume has to be determined by collect-
ing the mean and standard deviation of this intensity
measure. (The upper bound is then set to be the mean
plus five times of the standard deviation).

Due to the fact that binning procedure is used for
each measure in NIDES/STAT’s internal computa-
tion, we classified measures slightly differently in the
JiNao project. There are only two classes of measures
in JiNao: fixed measures and hash measures. Fixed

79

measures include those measures which have known
(hence fixed) bin end-points (e.g., OSPF packet types
and LSA age), while hash measures refer to those mea-
sures which bin end-points have to be derived (for in-
stance, OSPF packet volume).

After the end points have been determined, the bins
can be scaled either in a linear or geometric fashion.
For fixed measures, the choice is most likely a linear
scaling. The choice mainly depends on the applica-
tions and the data distribution for a hash measure. In
the case of JiNao project, we found the linear scaling
gave us a more even probability distribution of OSPF
packet volume measure. It results in better stability
and detection response. Therefore, linear scaling is
adopted in JiNao for both classes of measures (and Q
probability distribution, see Section 5.2.2).

5.2 NIDES/STAT Algorithm

NIDES/STAT algorithm monitors a subject’s (ei-
ther a user or a software program) behavior on a com-
puter system, and raises alarm flags when the sub-
ject’s current (short-term) behavior deviates signifi-
cantly from its expected behavior, which is described
by its long-term profile. NIDES’s algorithm is based
on a x2-like test for comparing the similarity between
the short-term and long-term profiles.

Some notations for describing the algorithm are in
order. Let the current system behavior be a ran-
dom variable under the sample space S. Events,
Ey, E,,...Eg, represent a partition of S, where these
k events are mutually exclusive and exhaustive. Let
D1,P2,. - - Pk be the probabilities of the occurrence cor-
responding to events E;, E,,... Ey. The random ex-
periment is repeated N times independently, where
N is a large number. Furthermore, Y; represents the
number of occurrences for event E;. Thus, we have
21_1 (pi) = 1, where p; = Y;/N.

To examine whether a short-term profile has a sim-
ilar probability distribution with the corresponding
long-term profile, we test the following hypothesis:

Hy:pi=p;,i=12,...,k,
where p; = Y/ /N'. Variables p},Y/,andN’ are asso-
ciated with short-term profile. They denote the same
meaning of their long-term profile counterparts.

Let
YI
Z Y/ - N'xpi)?

i=1

N ! X Pz)z 1)
N' x p; (
Intuitively, @ measures the “closeness” of the observed
numbers to the corresponding expected numbers. A
small @Q favors hypothesis Hy, while a large @ favors
H,. If independence is assumed between events E;,

and the experiments are carried out independently, it
has been proved that, for a large N, @ has an approxi-
mate x? distribution with k — 1 degree of freedom. To
get an accurate approximation, it is suggested that
N should be larger than 50 and (IV X p;) should be
larger than 5.. Otherwise, several “rare” events should
be merged together to form a new event such that
(N X ppew) would exceed 5, where ppe,, denotes the
probability for the new defined event.

Let g be an instance of Q. If Pr(Q > ¢) < a (or
g > x2%(k—1)) where a is the desired significance level
of the test, the hypotheses is rejected. In the context of
our application, it means that the short-term profile is
statistically different from its long-term profile which
allows us to draw a conclusion that an anomalous be-
havior has occurred. Two kinds of errors are defined.
Type I error means that the hypotheses is true but is
rejected. Type II error means the Hypotheses is false,
but is accepted. The probability that Type I error
occurs is also refereed as false positive rate, while the
probability for type II error is refereed as false negative
rate.

In practice, however, the assumption of indepen-
dence between events may not hold true. Therefore,
Q may not have a x? distribution. The NIDES/STAT
algorithm proposed a way to track the values of @ in
order to establish an empirical probability distribution
for Q. This distribution, along with the distribution
of the system’s expected behavior (i.e. p1,pa,...pk) ,
is saved in a long-term profile, which is updated per
UPDATE_PERIOD (24 hours in NIDES, 4 hours in
our case) in a real-time operation. The details of op-
eration is provided in Section 5.2.2.

Also the NIDES/STAT algorithm defines another
variable S which is transformed from the tail proba-
bility of @ distribution such that S has a half-normal
distribution. The purpose of defining S is to allow the
degree of anomaly from different types of measures to
be added on a comparable basis. The formula is:

_ 41y _ Prob(@ > q)
=g~ @20,

()
where ¢ is the cumulative normal distribution function
of an N(0,1) variable, and again, Prob(Q > q) is the
tail probability.

5.2.1 Weighted Sum for Short-Term Profile

The NIDES/STAT algorithm compares system’s cur-
rent short-term profile with its long-term profile. The
sample size N dictates the time span of so called
“short-term”. Intuitively, a “sliding window” should
be implemented to keep the most recent N pieces of
audit records. Whenever a new audit record arrives,

80

the window slides to cover it and the most remote (old-
est) record is discarded. Then Y; is updated, and @
and S are recalculated. But when N is big, the “slid-
ing window” scheme would consume too much com-
puting resources. NIDES/STAT algorithm proposed
a weighted sum scheme to deal with this problem. A
new variable Nz, called effective N, is introduced.
Each time an event E; occurs, Y; is recalculated with
the following formula:

Yi:Y;XZ_T'-{-l,

Y=Y X2, i,
k
Nejs = Z(K) = Nesp x277 + 1.

i=1

Count; = Count; +1 .

where 7, is a pre-defined short-term fading factor, also
referred to as half-life in NIDES/STAT algorithm. If
7 is chosen to be ﬁ, the weight of a trail record
will fade to 0.5 after 100 more records have been re-
ceived. Note that N.zs no longer bears the original
meaning of N which is the number of experiments. It
is a weighted sum of all the experiments with the most
recent one having the most weight. It can be easily de-
rived that Ness has an asymptotic value of H_;—_,;
Each category (event) has a counter, Count;. It is
used when long-term profile is updated, which is ex-
plained in next section.

Use this scheme, the calculations can be done re-
cursively and efficiently. The computing time is pro-
portional to k, which is the number of events. Typi-
cally it is much smaller than N, which could be several
hundreds or even several thousands. Also this scheme
saves lots of memory since it only requires to remem-
ber k variables rather than N records.

5.2.2 Long-Term Profile Training and Update
Training is the process by which the statistical com-
ponent learns normal behavior for a subject. In
NIDES/STAT, the profile training consists of three
phases:

Category, C-Training: to learn the subject’s ex-
pected behavior, i.e., probabilities for events, E;;

Q Statistics, Q-Training: to learn empirical distri-
bution for Q statistic which measures the devi-
ation between short-term observations and long-
term expected category distributions;

Threshold, T-Training: wherein the system estab-
lishes the threshold for the measures.

After training, the long-term profile is updated at a
regular interval (for example, once per day in NIDES
and every four hours in JiNao) to allow adaptation
to graduate change of a subject’s behavior. A long-
term fading factor 7; is defined so that the profile will
"forget” the ancient data gradually. The details of the
first two training phases are provided below. In our
implementation, we did not adopt the T-Training due
to certain practical concerns. The rationale is outlined
in Section 5.2.3.

C-Training: Collect Expected Probabilities

After the high end-point of a hash measure is derived
through a warm-up pre-C-Training phase, the follow-
ing algorithm is applied to both hash and fixed mea-
sures to calculate the expected probabilities p;. The
calculation is activated at the end of each update pe-

riod.
k

Upd_Period_Count = Z Count;,

=
Hpeps = Hness x 277,

TempCount; = Hnezpy x p; + Count;,

Hpyeps = Hneps + Upd_Period-Count,

pi = TempCount;/Hyess

Upd_Period_Count has the total number of observa-
tions since the last long-term profile update across all
categories (events) for a given measure. Hyeysy is the
historical effective number of observations. It is saved
in long-term profile and aged by multiplying with 2 to
the power —7;. Now Hess X p; gives aged count of the
expected occurrence for category i (event ;). Then p;
is updated by combining with the counts accumulated
since the last update, Count;. In C-Training, Hycss
has an initial value 0. While in regular update, Hneyy
is retrieved from long-term profile.

Q-Training: Track Q’s Distribution To track
the historical frequency distribution for @, a procedure
similar to the determination of the high end-point of
a hash measure is adopted to derive the Quez. A
linear scale is adopted in the binning procedure of Q’s
probability distribution.

Let Qp; denote the probability with which @ is in
the it bin. Each bin has an integer counter, QCount;,
which counts how many times @ falls into i** bin.
Assume ¢ is an instance of @, following formula is
used to determine the number of bin which ¢ is in :

i= { (a/Qmaz) x 31 if ¢ < Qmas
31 if ¢ > Qmax

81

Then we simply increase bin ¢’s counter :
QCount; = QCount; + 1;

Qp; is updated in the same way as p;,

31
Upd_Period_QCount = Z QCount;,

i=0
QHpNess = QHnesy x 277,
QT empCount; = QHness x Qpi + QCount;,
QHness = QHNess + Upd_Period_QCount,
Qp; = TempQCount;/QHney s

Upd_Period.QCount has the total number that a
measure has been activated. QH .y is the historical
effective number. It is saved in long-term profile and
aged by multiplying with 2 to the power —7; (yes, the
same 7; as in Section 5.2.2). QHness X p; gives aged
count of the expected occurrence for bin . Then Qp;
is updated by combining with the counts accumulated
since the last update time, QCount;. In Q —Training
phase, QH .y is initialized to 0. While in regular up-
date, QH sy is retrieved from long-term profile.

5.2.3 Score Anomalous Behavior

As each audit record is received, Q is computed ac-
cording to equation (1) while changing N to N.s¢

k
(Yi = Ness x pi)®

Q=S i Tefs TP
; Ness X pi

Assume the result value is q. Then the tail proba-
bility is calculated as following:

31
Prob(@ >gq) =Y _ Qp:

k=1

1 is the bin index which ¢ falls into.

As mentioned in Section 5.2, the tail probability
Prob(Q > q) is transformed into another variable S
using formula (2). High S value corresponds to high
g, thus corresponds to high degree of discrepancy be-
tween short-term and long-term profiles.

This is repeated for all measures, resulting in a vec-
tor of S values. As proposed in NIDES, all the S scores
are combined into a overall statistics which is called
T2. This statistic is a summary judgment of the ab-
normality of all active measures, and is given by the
sum of the squares of the S statistics normalized by
the number of measures:

N, e Q2
Sy 2,

Nmeasure

T2 =

Npeasure 18 the total number of measures.

Similar to @, the NIDES/STAT algorithm proposes
to track the empirical distribution for T2. The distri-
bution is collected during the last stage of the profile
building period, after reasonably stable long-term dis-
tributions for the @ statistics have been constructed.
A yellow alarm is raised when an instance of T2, say
t2, is so high that Prob(T2 > t2) < 0.01, and a red
alarm is raised when Prob(T2 > t2) < 0.001.

JiNao/STAT did not adopt T'2 statistic because of
following concerns:

1. It’s hard for a security officer to understand the
alarm. Due to the nature of statistical-base in-
trusion detection, it is possible that false alarms
will be raised even without intrusion activity. So
a security officer must investigate the reason for
an alarm before he can tell if it is due to a intru-
sion or not. When configuring the IDS, he may
choose several measures to monitor several differ-
ent aspects of the system’s behavior. We consider
that it is better for each measure to raise alarm
on its own. In this way, at least the officer can
know which aspect(s) of the system went wrong.

2. This scheme may harm the sensibility of the IDS,
and does not conform to the pay more get more
principle. Different attacks may influence differ-
ent aspects of the system’s behavior. This is the
reason one wants to choose several measures to
guard against potential attacks. The effective-
ness of the IDS depends on the assumption that
it is hard for an attacker to attack a system with-
out disturbing any of those monitored aspects.
By adding the anomalies together, it is easier to
detect those “careless” attacks which would dis-
turb many aspects of system behavior, but the
anomaly which is caused by “deliberate” attacks
tends to be buried under other anomalies. Adding
too many Ss together makes it difficult for T2 to
detect “deliberate” attacks.

3. Not all measures are activated for each audit
records. For example, to protect an OSPF router,
a measure is chosen to monitor the overall rout-
ing traffic a router receives, i.e. how many OSPF
packets it has received during.a period of time.
Also, another measure is chosen to monitor the
LS agefield in every LSA. Now, assume the router
receives an OSPF Hello packet (Hello packets
are used to keep “adjacency” between neighbor-
ing routers. There is no LSA in Hello packet),
the first measure is activated, while the second
measure is skipped since there is no LSA at all.

82

Adding them together does not necessarily pro-
vide better attack indication.

Therefore, in JiNao/STAT, a measure is a stand-
alone object. Each measure maintains its own state,
and raises alarm on its own.

5.3 Experimental Results

The experimental results are represented as either
Red Alarm, Yellow Alarm, or Normal, which rep-
resent the tail probability Prob(Q > ¢q) “< 0.1%”,
“between 0.1% and 1%”, or “> 1%”, respectively. The
corresponding S statistic is 3.3 and 2.58 as the thresh-
olds for red alarms and yellow alarms, respectively. In
our implementation, the alarms were raised on average
about 8-15 seconds after the attacks were launched on
the testbed described in Section 2.7. All of the at-
tacks would generate extra traffic with the exception
of LSID attack. LSID attack will cause the gated on
the victim to stop running and reduce the OSPF traf-
fic. Statistical module can detect all the attacks with
a low false positive rate.

6 Conclusions

In this paper, we presented the vulnerabilities of the
OSPF link-state routing protocol and the JiNao intru-
sion detection system We demonstrated in three real
network testbeds: MCNC, NCSU, and AF/Rome Lab-
oratory (mixture of PCs and commercial routers) that
it is feasible to perform network infrastructure attacks
to damage the network routing services. Through
our analysis, if the target protocol itself is robust
and self-stabilizing and is implemented correctly, the
effect/damage to the network service is limited and
easily detectable. For instance, the OSPF proto-
col will “fight-back” on any malicious attacks on the
LSA (Link-State Advertisement) instances. If the at-
tacker persistently launches these attacks, the attack
instances can be detected very quickly and the source
of the attacks can be identified.

While it’s almost impossible to prevent these OSPF
routing attacks, we showed that the JiNao IDS can ef-
fectively identify all three known OSPF/LSA attacks.
In JiNao, the protocol analysis module is designed
to catch known attacks, while the statistical analysis
module is used to detect anomaly (unknown attacks).
Our experiments show that the OSPF routing attacks
can be detected by both modules with a low false pos-
itive. It is not surprising that the protocol analysis
module performs very well as we use FSM with real-
time extensions to model the behavior of those attacks.
It is our observation that, compared to the long-term
profiles collected under normal situations, the devia-
tion caused by the attacks is very significant.

The JiNao IDS system can run on FreeBSD, Linux
(real-time OSPF traffic, on-line), and Solaris (tcp-
dump OSPF traffic, off-line). It has been integrated
with the UCD-SNMP package so that a remote SNMP
management application can manage JiNao through
the SNMP JiNao-MIB interface.

Through the development of the JiNao system, we
learned the following lessons:

Robust Protocol Design and Implementation:
If a network protocol is not carefully designed, then it
is extremely hard to develop an IDS to detect poten-
tial attacks. For instance, our experience says that
distance-vector (DV) routing protocols are less de-
tectable than link-state (LS) protocols. The key rea-
son is that DV protocols will aggregate routing infor-
mation along the route path, while LS protocols will
flood the original link state information to all other
routers in the same area.

Protocol Modulization and Event Abstraction:
While studying only the protocol module, we found
that many different types of low-level real-time events
and states need to be considered. With the number of
events and states, the FSMs for detecting the OSPF
attacks can be very complicated. Thus, the develop-
ment of the event abstraction module under JPAM
is greatly useful in reducing the event space into 18
valuable high-level events.. Based on these 18 events,
JFSMs we developed contain only 3-4 states and 11-
24 real-time transitions. As an example, the JFSM for
detecting the Seq++ attack only contains 4 states and
11 transitions.

Selection of Statistical Measures: In our exper-
iments about the statistical analysis module, we have
used three different measures: “OSPF packet vol-
ume,” “OSPF packet type” and “LSA age.” “OSPF
packet volume” is good for detecting Seq++ and
MaxAge, while “OSPF packet type” is useful in deal-
ing with Seq++ and MaxSeq. On the other hand, “LSA
age” is only good for detecting MaxAge correctly. It is
not clear to us whether there is a single statistical mea-
sure that can cover all three attacks. However, if we
take only “OSPF packet type” and “LSA age”, we are
able to detect all the attacks with a very small false
positive rate.

Efficient Implementation: Although the imple-
mentation of JiNao is in user space, the observed per-
formance is acceptable. One key factor for achieving
such good performance is that JiNao filters out un-
necessary information or events in different network
protocol layers in the kernel space.

83

References
[1] Gregory G. Finn. Reducing the vulnerability of
dynamic computer network. Technical report,
Univ. of Southern California, ISI, June 1988.

[2] Christian Huitema.
Prentice Hall, 1995.

Routing in the Internet.

(3] Harold S. Javitz and Alfonso Valdest. The SRI
IDES Statistical Anomaly Detector. In Proc.
of the IEEE Symposium on Research in secu-
rity .and Privacy, pages 316-326, May 1991.
http://www2.csl.sri.com/nides/index5.html.

[4] Nancy Lynch and Mark Tuttle. An intro-
duction to input/output automata. Techni-
cal report, Laboratory for Computer Science,
Massachusetts Institute of Technology, Septem-
ber 1989. Technical Memo MIT/LCS/TM-373;
http://theory.lcs.mit.edu/tds/papers/Lynch/

CWI89.html.

J. Moy. RFC 2328: OSPF Version 2, April 1998.
ftp://ftp.isi.edu/in-notes/rfc2328.txt.

(5]

S.L. Murphy and M.R. Badger. Digital signature
protection of the ospf routing protocol. In Proc.
of the Internet Society Symposium on Network
and Distributed Systems Security, 1996.

[6]

B.R. Smith and J.J. Garcia-Luna-Aceves. Secur-
ing the Border Gateway Routing Protocol. In
Global Internet, November 1996.

B.R. Smith, S. Murthy, and J.J. Garcia-Luna-
Aceves. Securing Distance-Vector Routing Pro-
tocols. In IEEE/ISOC Symposium on Network
and Distributed System Security, San Diego, CA,
February 1997.

S.F. Wu B. Vetter, F. Wang. An ex-
perimental study of insider attacks for the
ospf routing protocol. In 5th IEEE In-
ternational Conference on Network Protocols,
Atlanta, GA. IEEE press, October 1997.
http://shang.csc.ncsu.edu/pubs.html.

(7]

(8]

(0]

Divert Sockets for Linux.

http://www.anr.mcnc.org/~ divert/.

[11] B. Vetter, F. Wang, and S.F. Wu. An Exper-
imental Study of Insider Attacks for the OSPF
Routing Protocol. In IEEE International Con-
ference on Network Protocols (ICNP), pages 293—
300, October 1997.

(10)

